Algebra 2

9-01 Using Normal Distributions

Normal Distribution

- A normal distribution is modeled by a \qquad -shaped curve called a \qquad curve that is symmetric about the \qquad .

Normal Distribution Properties

- A normal distribution with mean μ and standard deviation σ has the following properties:

1. The total area under the related normal curve is \qquad .
2. About \qquad of the area lies within \qquad standard deviation of the mean.
3. About \qquad of the area lies within \qquad standard deviations of the mean.
4. About \qquad of the area lies within \qquad standard deviations of the mean.

A normal distribution has mean and standard deviation. For a randomly selected x-value from the distribution, find $\mathrm{P}(\mu-\sigma \leq$ $x \leq \mu+3 \sigma$)
$P(x \leq \mu-\sigma)$

The weight of strawberry packages is normally distributed with a mean of 16.18 oz and standard deviation of 0.34 oz . If you randomly choose a container, what is the probability that it weighs less than 15.5 oz ?
$\mu=33, \sigma=4$, find $P(29 \leq x \leq 37)$

Algebra 2 9-01

Standard Normal Distribution

- Normal distribution with mean $=$ \qquad and standard deviation $=$ \qquad .
- Formula $=z=\frac{x-\mu}{\sigma}$
- The z value for a particular x-value is called the \qquad for the x-value and is the number of \qquad the x-value lies above or below the \qquad \bar{x}.
A survey of 20 colleges found that the average credit card debt for seniors was $\$ 3450$. The debt was normally distributed with a standard deviation of $\$ 1175$. Find the z-score corresponding to an x-value of $\$ 3600$.
$\sigma=34, z$-score $=-1.5, x=138$ what is μ ?

Skewed

- Normal distribution: mean \qquad median
- Skewed distribution: mean \qquad median
- If mean < median, skewed \qquad
- If mean > median, skewed \qquad

Bell-shaped and

Skewed left

Skewed right

Determine whether each histogram has a normal distribution.

470 \#1, 3, 5, 7, $9,11,13,15,17,18,19,23,24,33,37,39,41,43,45,47=20$

